Files
NandPartitionTableConvert/nand_part_table_cvt.cc
2024-05-17 22:55:20 +08:00

329 lines
11 KiB
C++

#include <cstdint>
#include <array>
#include <fmt/format.h>
#include "os_utils.h"
#include "utf_convert.h"
constexpr uint32_t kInvalidPartition = 0xFFFFFFFFu;
struct LeapPartitionItem {
uint32_t fixed = 1;
uint32_t start = 0;
uint32_t end = 0;
uint32_t size = 0;
};
struct MinatoPartitionItem {
uint32_t start = 0;
uint32_t end = 0;
uint32_t size = 0;
uint32_t flags = 0;
};
struct XeltekPartitionItem {
uint32_t start = 0;
uint32_t end = 0;
uint32_t size = 0;
uint32_t unknown = kInvalidPartition;
};
enum class PartitionType {
kNone = 0,
kLeap,
kMinato,
kXeltek
};
static_assert(sizeof(MinatoPartitionItem) == 16 &&
sizeof(XeltekPartitionItem) == 16 &&
sizeof(LeapPartitionItem) == 16);
struct SimplePartitionItem {
uint32_t start = 0;
uint32_t end = 0;
uint32_t size = 0;
};
PartitionType ReadPartitionTable(const std::vector<uint8_t>& data, std::vector<SimplePartitionItem>& out) {
if (data.size() % 16 != 0) {
fmt::print("Invalid partition table size\n");
return PartitionType::kNone;
}
if (data.empty()) {
fmt::print("Empty partition table\n");
return PartitionType::kNone;
}
out.clear();
out.reserve(data.size() / 16);
bool isLeap = false;
const std::array<char, 16> kLeapHeader{"GROUP DEFINE2\0\0"};
if (memcmp(data.data(), kLeapHeader.data(), 16) == 0) {
isLeap = true;
}
if (isLeap) {
const auto* items = reinterpret_cast<const LeapPartitionItem*>(data.data());
// start from 1
for (size_t i = 1; i < data.size() / 16; i++) {
const auto& item = items[i];
if (item.start == kInvalidPartition) {
break;
}
if (item.fixed != 1) {
fmt::print("Invalid partition table, got fixed value {}\n", item.fixed);
return PartitionType::kNone;
}
SimplePartitionItem simpleItem;
simpleItem.start = item.start;
simpleItem.end = item.end;
simpleItem.size = item.size;
out.push_back(simpleItem);
}
return PartitionType::kLeap;
} else {
struct UnknownPartitionItem {
uint32_t start = 0;
uint32_t end = 0;
uint32_t size = 0;
uint32_t unknown = 0;
};
PartitionType type = PartitionType::kNone;
const auto* items = reinterpret_cast<const UnknownPartitionItem*>(data.data());
if (items[0].unknown == 0 || items[0].unknown == 1) {
type = PartitionType::kMinato;
} else if (items[0].unknown == kInvalidPartition) {
type = PartitionType::kXeltek;
} else {
fmt::print("Invalid partition table, unknown value {}\n", items[0].unknown);
return PartitionType::kNone;
}
for (size_t i = 0; i < data.size() / 16; i++) {
const auto& item = items[i];
if (item.start == kInvalidPartition) {
break;
}
// check unknown
if (item.unknown != kInvalidPartition && item.unknown != 0 && item.unknown != 1) {
fmt::print("Invalid partition table, got unknown value {}\n", item.unknown);
return PartitionType::kNone;
}
SimplePartitionItem simpleItem;
simpleItem.start = item.start;
simpleItem.end = item.end;
simpleItem.size = item.size;
out.push_back(simpleItem);
}
return type;
}
}
std::vector<uint8_t> GenerateLeapPartitionTable(const std::vector<SimplePartitionItem>& items) {
std::vector<uint8_t> data;
data.resize((items.size() + 2) * 16);
std::array<char, 16> header{"GROUP DEFINE2\0\0"};
memcpy(data.data(), header.data(), 16);
auto* outItems = reinterpret_cast<LeapPartitionItem*>(data.data());
for (size_t i = 0; i < items.size(); i++) {
const auto& item = items[i];
outItems[i + 1].fixed = 1;
outItems[i + 1].start = item.start;
outItems[i + 1].end = item.end;
outItems[i + 1].size = item.size;
}
// add end
outItems[items.size() + 1].fixed = kInvalidPartition;
outItems[items.size() + 1].start = kInvalidPartition;
outItems[items.size() + 1].end = kInvalidPartition;
outItems[items.size() + 1].size = kInvalidPartition;
return data;
}
std::vector<uint8_t> GenerateXeltekMinatoPartitionTable(const std::vector<SimplePartitionItem>& items,
PartitionType type) {
std::vector<uint8_t> data;
data.resize(items.size() * 16);
auto* outItems = reinterpret_cast<MinatoPartitionItem*>(data.data());
for (size_t i = 0; i < items.size(); i++) {
const auto& item = items[i];
outItems[i].start = item.start;
outItems[i].end = item.end;
outItems[i].size = item.size;
if (type == PartitionType::kMinato) {
outItems[i].flags = 0;
} else if (type == PartitionType::kXeltek) {
outItems[i].flags = kInvalidPartition;
}
}
return data;
}
std::vector<uint8_t> GeneratePartitionTable(const std::vector<SimplePartitionItem>& items, PartitionType type) {
if (type == PartitionType::kLeap) {
return GenerateLeapPartitionTable(items);
} else {
return GenerateXeltekMinatoPartitionTable(items, type);
}
}
const char* GetPartionTypeLongName(PartitionType type) {
switch (type) {
case PartitionType::kLeap:
return "Leap Electronic NAND Flash programmer";
case PartitionType::kMinato:
return "Minato NAND Flash programmer, Data I/O NAND Flash programmer";
case PartitionType::kXeltek:
return "Xeltek Universal IC Chip Programmer";
default:
return "Unknown";
}
}
int MainEntry(int argc, char** argv) {
PartitionType inputType = PartitionType::kNone;
PartitionType outputType = PartitionType::kNone;
std::string inputFile;
std::string outputFile;
bool quiet = false;
if (argc == 1 || (argc == 2 && (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "--help") == 0))) {
fmt::print("Usage: {} -i <input> [-q] [-L/M/X output]\n", argv[0]);
fmt::print(" -i <input> : input file\n");
fmt::print(" -q : quiet mode\n");
fmt::print(" -L <output> : output file for Leap\n");
fmt::print(" -M <output> : output file for Minato\n");
fmt::print(" -X <output> : output file for Xeltek\n");
return 1;
}
// parse arguments
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-i") == 0) {
if (i + 1 < argc) {
inputFile = argv[i + 1];
i++;
}
} else if (strcmp(argv[i], "-q") == 0) {
quiet = true;
} else if (strcmp(argv[i], "-L") == 0) {
if (i + 1 < argc) {
outputFile = argv[i + 1];
outputType = PartitionType::kLeap;
i++;
}
} else if (strcmp(argv[i], "-M") == 0) {
if (i + 1 < argc) {
outputFile = argv[i + 1];
outputType = PartitionType::kMinato;
i++;
}
} else if (strcmp(argv[i], "-X") == 0) {
if (i + 1 < argc) {
outputFile = argv[i + 1];
outputType = PartitionType::kXeltek;
i++;
}
}
}
if (inputFile.empty()) {
fmt::print("Input file is required\n");
return 1;
}
std::vector<uint8_t> inputData;
if (int rc; !ReadFile(inputFile, inputData, 512, rc)) {
fmt::print("Unable to open '{}', rc={}, {}", inputFile, rc, GetErrorMsg(-rc));
return 1;
}
std::vector<SimplePartitionItem> items;
inputType = ReadPartitionTable(inputData, items);
if (inputType == PartitionType::kNone) {
fmt::print("Invalid or unknown partition table\n");
return 1;
}
if (items.empty()) {
fmt::print("Empty partition table\n");
return 1;
}
bool hasError = false;
{
// check if output is valid
// 1. range check
for (const auto& item: items) {
if (item.start >= item.end || item.start + item.size > item.end) {
fmt::print("Invalid partition table, start={}, end={}, size={}\n", item.start, item.end, item.size);
hasError = true;
}
}
// 2. items should be sorted and not overlap
uint32_t last = 0;
for (const auto& item: items) {
if (item.start < last) {
fmt::print("Invalid partition table, items are not sorted or overlap\n");
hasError = true;
break;
}
last = item.end;
}
}
if (hasError) {
fmt::print("The partition table has errors, aborting\n");
return 1;
}
// if not quiet, print the partition table
if (!quiet) {
std::string buf;
buf += fmt::format("Input: {} partition(s), {}\n", items.size(), GetPartionTypeLongName(inputType));
/**
* Index Start End Size
* 31 00000000 00000000 00000000
*/
buf += "Index Start End Size\n";
for (size_t i = 0; i < items.size(); i++) {
const auto& item = items[i];
buf += fmt::format("{:5} {:08x} {:08x} {:08x}\n", i + 1, item.start, item.end, item.size);
}
fmt::print("{}", buf);
}
if (outputType != PartitionType::kNone && !outputFile.empty()) {
std::vector<uint8_t> outputData = GeneratePartitionTable(items, outputType);
if (int rc; !WriteFile(outputFile, outputData, rc)) {
fmt::print("Unable to write '{}', rc={}, {}\n", outputFile, rc, GetErrorMsg(-rc));
return 1;
}
if (!quiet) {
fmt::print("Written to '{}', format: {}\n", outputFile, GetPartionTypeLongName(outputType));
}
}
return 0;
}
// The real main entry
#if defined(_WIN32) || defined(_WIN64)
extern "C" void __wgetmainargs(int*, wchar_t***, wchar_t***, int, int*);
int main(int argc, char** argv) {
int argcW;
wchar_t** argvW;
wchar_t** envW;
__wgetmainargs(&argcW, &argvW, &envW, 0, nullptr);
std::vector<std::string> args;
args.reserve(argcW);
for (int i = 0; i < argcW; i++) {
args.push_back(utfcvt::WideToUTF8(argvW[i]));
}
std::vector<char*> argvC;
argvC.reserve(args.size());
for (auto& arg: args) {
argvC.push_back(arg.data());
}
return MainEntry((int) argvC.size(), argvC.data());
}
#else
int main(int argc, char** argv) {
return MainEntry(argc, argv);
}
#endif